到目前为止本文所讨论的测量都是对暴露在发光输出功率下,即处于正偏条件下的PV电池进行的测量。但是PV器件的某些特征,例如分流电阻(rsh)和漏电流,恰恰是在PV电池避光即工作在反偏情况下得到的。对于这些I-V曲线,测量是在暗室中进行的,从起始电压为0V到PV电池开始击穿的点,测量输出电流并绘制其与加载电压的关系曲线。利用PV电池反偏I-V曲线的斜率也可以得到分流电阻的大小(如图5所示)。从该曲线的线性区,可以按下列公式计算出分流电阻:
rsh=ΔVReverseBias/ΔIReverseBias
 V反偏/用于估算rsh的线性区/ΔI反偏/ΔV反偏/logI反偏
图5.利用PV电池反偏I-V曲线的斜率可以得到PV电池的分流电阻。
除了在没有任何光源的情况下进行这些测量之外,我们还应该对PV电池进行正确地屏蔽,并在测试配置中使用低噪声线缆。
电容测量
与I-V测量类似,电容测量也用于太阳能电池的特征分析。根据所需测量的电池参数,我们可以测出电容与直流电压、频率、时间或交流电压的关系。例如,测量PV电池的电容与电压的关系有助于我们研究电池的掺杂浓度或者半导体结的内建电压。电容-频率扫描则能够为我们寻找PV衬底耗尽区中的电荷陷阱提供信息。电池的电容与器件的面积直接相关,因此对测量而言具有较大面积的器件将具有较大的电容。
C-V测量测得的是待测电池的电容与所加载的直流电压的函数关系。与I-V测量一样,电容测量也采用四线技术以补偿引线电阻。电池必须保持四线连接。测试配置应该包含带屏蔽的同轴线缆,其屏蔽层连接要尽可能靠近PV电池以最大限度减少线缆的误差。基于开路和短路测量的校正技术能够减少线缆电容对测量精度的影响。C-V测量可以在正偏也可以在反偏情况下进行。反偏情况下电容与扫描电压的典型曲线(如图6所示)表明在向击穿电压扫描时电容会迅速增大。
 图6.PV电池电容与电压关系的典型曲线。
另外一种基于电容的测量是激励电平电容压型(DLCP),可在某些薄膜太阳能电池(例如CIGS)上用于判断PV电池缺陷密度与深度的关系。这种测量要加载一个扫描峰-峰交流电压并改变直流电压,同时进行电容测量。必须调整这两种电压使得即使在扫描交流电压时也保持总加载电压(交流+直流)不变。通过这种方式,材料内部一定区域中暴露的电荷密度将保持不变,我们就可以得到缺陷密度与距离的函数关系。
|