门户-光伏|太阳能|PV|技术|质量|认证|标准
随着检测器和数据处理系统的发展,傅里叶变换显微红外光谱技术在短短的二十几年间从单纯的显微镜与红外光谱联用,发展到了红外成像系统。 将傅里叶变换红外光谱仪中的红外光束引入显微镜光路,可以获得在显微镜下观察到微小尺寸样品的光学影像及相应成分的红外光谱信息。由于红外光的波长较长,红外显微镜的空间分辨率一般在6mm左右。若采用单点检测器收集红外光谱,则为傅里叶变换显微红外光谱仪;若采用阵列检测器收集红外光谱,则为傅里叶变换红外成像系统。红外图像系统的出现大大提高了样品的检测速度,目前在刑侦学、生物学、医学、化学、材料科学和矿物学等诸多领域都得到了广泛的应用。 无论是显微红外光谱仪或是红外成像系统,使用者最关心的还是仪器的性能指标,也就是显微模式下红外光谱的信噪比及空间分辨率,另外,如何从红外光谱图像中提取有用的信息,也是大家所关心的,下面将综合这几点,介绍红外成像系统的进展。 一、信噪比 在红外显微镜和红外成像系统测试中,通过特殊设计的光学系统将测量光束直径缩小到微米甚至亚微米量级,从而可测试尺寸非常小的样品或者是大尺寸样品中非常小的区域,显然此时光通量远远小于常规红外光谱仪,若要获得高的信噪比,对整体光学系统的光路系统要求相应也有很大的很高,通常需要多个光学聚焦镜(卡塞格林镜)联合使用,才能保证红外光同轴,且能量损失最小,如图1所示为PerkinElmer公司红外光谱成像系统中的三卡塞格林镜光学系统。 红外光先从光源到达卡塞格林镜1,该镜为聚焦镜,将光束聚焦,经过样品,到达卡塞格林镜2,即物镜上,在此光路图中,最重要的卡塞格林镜为3号镜,即到达检测器前,将红外光谱的信号再次聚焦,保证能量最大。 高的光通量,才能保证高的信噪比,所以红外光谱成像系统中三卡塞格林镜的光路设计在一定程度上决定了其较高的信噪比。 ![]() 图1PerkinElmer公司红外图像系统中的三卡塞格林镜光学系统 如前所述,在红外显微镜和红外成像系统的光通量远低于常规红外光谱仪,且扫描速度较快,常规红外检测器不能满足要求,无论是单点还是图像分析,均需要使用液氮冷却的MCT检测器以保证在快速测量时的高信噪比。此处需要说明,虽然测试速度比较慢,但是单点检测器的信噪比更高、测量光谱范围更宽。 红外成像系统所用检测器基本上可以分为两种,一是焦平面阵列检测器,另一种是线阵列检测器。焦平面阵列检测器包括两类,第一类主要是由红外显微镜和大面积焦平面阵列检测器(凝视型,以64′64和128′128为主)组成,凝视型同时以步进扫描技术(StepScan)作支撑;第二类主要是由红外显微镜和小面积焦平面阵列检测器(非凝视型,以16′16和32′32为主)组成,非凝视型不需要步进扫描技术作支撑,而是采用了快速扫描(RapidScan)的技术。由于焦平面阵列检测器源于美国军方的技术,美国国防部对此类产品向中国大陆的出口进行了限制,目前仍存在禁运的问题。因此,国内市场上常见的红外光谱仪器公司如PerkinElmer、ThermoFisherScientific、JASCO等则提供双排跳跃式线阵列检测器(2′16或2′8)或线阵检测器(1′16),再结合快速扫描功能,实现红外光谱成像质量和速度的双重提高。目前各仪器厂商阵列检测器的信噪比从150/1~800/1不等。 |